skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petrosyan, Arshak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract We study the singular set in the thin obstacle problem for degenerate parabolic equations with weight$$|y|^a$$ | y | a for$$a \in (-1,1)$$ a ( - 1 , 1 ) . Such problem arises as the local extension of the obstacle problem for the fractional heat operator$$(\partial _t - \Delta _x)^s$$ ( t - Δ x ) s for$$s \in (0,1)$$ s ( 0 , 1 ) . Our main result establishes the complete structure and regularity of the singular set of the free boundary. To achieve it, we prove Almgren-Poon, Weiss, and Monneau type monotonicity formulas which generalize those for the case of the heat equation ($$a=0$$ a = 0 ). 
    more » « less
  3. In this paper we introduce a notion of almost minimizers for certain variational problems governed by the fractional Laplacian, with the help of the Caffarelli-Silvestre extension. In particular, we study almost fractional harmonic functions and almost minimizers for the fractional obstacle problem with zero obstacle. We show that for a certain range of parameters, almost minimizers are almost Lipschitz or C1,β-regular. 
    more » « less